On the Influence of Micro- and Macroscopic Surface Modifications on Bone Integration of Titanium Implants
نویسندگان
چکیده
Background: Osseointegrated titanium implants are routinely used in clinical denstistry as anchorage units for dental prostheses. Although the overall clinical results are good, there are clinical situations when an optimized implant healing is desirable, for instance in order to shorten healing periods and to allow immediate loading. Aims: The present work was undertaken to study the influence of some microand macroscopical surface modifications on the integration and stability of titanium implants in bone. In addition, the aim was also to study the influence of a bone growth factor and autogenous bone grafts on implant healing in bone defects. Materials & Methods: The thesis is based on five experimental studies using a total of 12 mongrel dogs and 39 New Zealand White rabbits. In total, 327 screw-shaped implants were evaluated with histology and biomechanical tests. The implants had either a turned surface or had been treated with anodic oxidation to create a porous surface structure (microscopic modification). A groove with various sizes was added to one thread flank of oxidized implants (macroscopic modification) for comparison with implants without a groove. Ground sections of the intact bone-titanium interface were prepared for light microscopy and quantitative morphometry. A micro-CT technique was used for 3D visualisation of the bone in relation to the implant surface. Implant stability was measured with removal torque (RTQ) tests and resonance frequency analysis (RFA) measurements. Results: Turned and oxidized implants were placed in the dog mandible with circumferential defects which were filled with dog BMP+ carrier, carrier alone, autogenous bone chips or nothing. No differences in histological response and implant stability were seen between the different materials and controls after 4 and 12 weeks of healing. However, oxidized implants shower a stronger bone tissue response and were significantly more stable than turned implants after 4 weeks. A rabbit study demonstrated direct bone formation at the surface of oxidized but not turned implants after 7, 14 and 28 days. A darkly stained layer became populated with osteoblasts which produced osteoid towards the implant surface whilst turned implants seemed to be integrated by approximation of bone from the surrounding bone and marrow tissues. In paper III, an increased resistance to RTQ was seen for oxidized implants with a 110μm wide and 70 μm deep groove as compared with control implants without a groove after 6 weeks of healing. This was not observed for 200 μm wide grooves. Histology showed an affinity of bone formation to the grooves. Paper IV evaluated the influence of three different groove sizes on implant stability as measured with RTQ and RFA. The results confirmed that 110 μm grooves resulted in better stability than implants with 80 μm or 160 μm wide or no grooves. Histology of RTQ specimens revealed an increased incidence of bone fracture at the entrance of the groove as opposed to a separation at the bone-implant interface with decreased groove width. Bone formation had an affinity to the grooves which increased with decreased groove width. In paper V, bone formation was seen to occur more frequently in grooves than on opposing flank surfaces after 7, 14 and 28 days of healing in implant sites with small bone volumes. Conclusions: The present thesis shows that both microand macroscopical surface modifications have positive influences on the bone tissue response and stability of titanium implants. It is suggested that this is due to a combination of (i) contact osteogenesis as stimulated by the microtopography and (ii) guided bone formation as stimulated by the macrotopography, which resulted in an improved mechanical interlocking between bone and implant surface.
منابع مشابه
رفتار سلول استخوان ساز MG-63 بر روی سطح تیتانیم اصلاح شده با محلول اسیدی
The osseointegration of oral implants is related to the early interactions between osteoblastic cells and titanium surface. Chemical surface modification of titanium (Ti) implants is used to improve peri-implant bone growth, bone-to-implant contact, and adhesion strength. Thus, in this study, the surface topography, chemistry, and biocompatibility of polished titanium surface treated with mixe...
متن کاملDental Implant Surfaces - Physicochemical Properties, Biological Performance, and Trends
Pure titanium and titanium alloys are well established standard materials in dental implants because of their favorable combination of mechanical strength, chemical stability, and biocompatibility (Brunette et al., 2001). Integration of titanium implants with the surrounding bone is critical for successful bone regeneration and healing of dental implant. The concept of osseointegration was disc...
متن کاملEffect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis
Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...
متن کاملاثر امواج فراصوتی کم توان بر رشد استخوان در داخل کانال ایمپلانت تیتانیومی
The effect of ultrasound waves with low intensity on reducing the time of repair and healing of bone fracture has been known. The present research was undertaken to investigate the effect of ultrasound waves on acceleration of bone growth and, finally, on repair and healing of surgical area using in-vivo animal experiment. In this study, 20 titanium implants with proper dimensions wer...
متن کاملEvaluation of osseous integration of titanium orthopedic screws with novel SLA treatment in porcine model
The success of many endosseous implants in orthopaedic and dental applications depends on the surface characteristics, as they affect osseous integration. Previous investigations indicated that a novel large-grit sand-blasted and acid-etched (SLA) titanium (denoted as SLAffinity-Ti) implant had better bone integration than that of a comparably shaped implant with a plasma-sprayed titanium surfa...
متن کامل